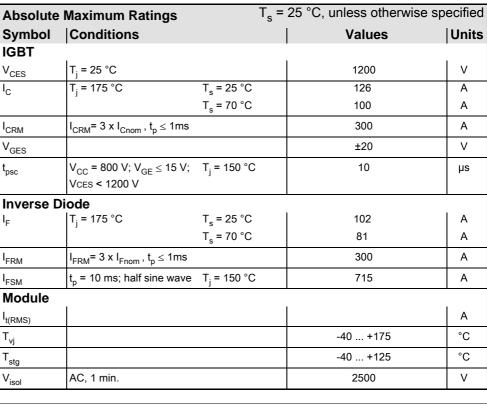
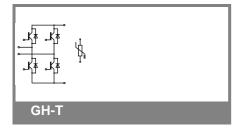


IGBT module

SK100GH12T4T


Target Data

Features


- · One screw mounting module
- Fully compatible with SEMITOP[®]1,2,3
- Improved thermal performances by aluminium oxide substrate
- New IGBT4 Technology
- · CAL 4 technology FWD
- Integrated NTC Temperature sensor

Typical Applications

Voltage regulator

Characteristics		T_c = 25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 3.4 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,02	mA	
		T _j = 125 °C		0,4		mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C			1200	nA	
V _{CE0}		T _j = 25 °C		0,8	0,9	V	
		T _j = 150 °C		0,7	0,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10		mΩ	
		T _j = 150°C		15		mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,8	2	V	
		$T_j = 150^{\circ}C_{chiplev}$		2,2	2,4	V	
C _{ies}				5,54		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF	
C _{res}				0,32		nF	
Q_G	V _{GE} =-7V+15V			750		nC	
R _{Gint}	T _j = 25 °C			2		Ω	
t _{d(on)}				63		ns	
t _r	R_{Gon} = 16 Ω	V _{CC} = 600V		65		ns	
E _{on}	di/dt = 1800 A/μs	I _C = 100A		16,6		mJ	
$t_{d(off)}$	$R_{Goff} = 16 \Omega$	T _j = 150 °C		521		ns	
t _f	di/dt = 1800 A/μs			80		ns	
E _{off}				10		mJ	
$R_{th(j-s)}$	per IGBT			0,43		K/W	

IGBT module

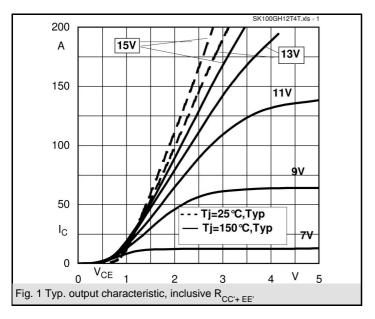
SK100GH12T4T

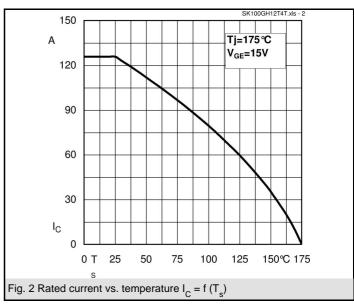
Target Data

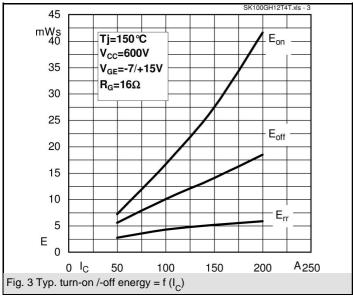
Features

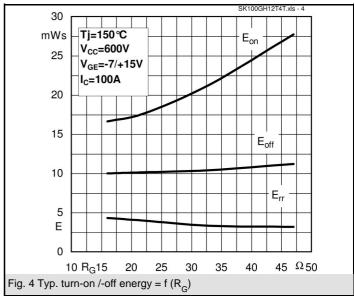
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- New IGBT4 Technology
- CAL 4 technology FWD
- Integrated NTC Temperature sensor

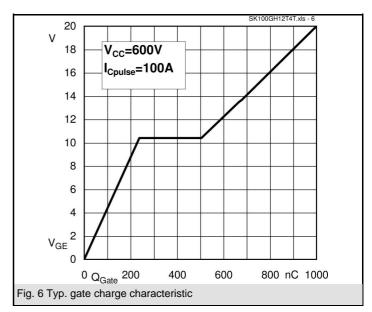
Typical Applications

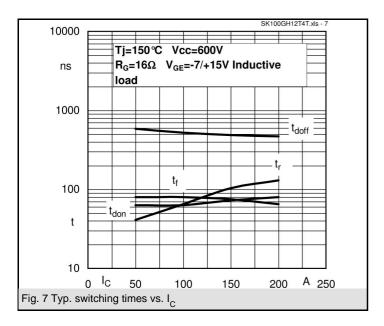

Voltage regulator

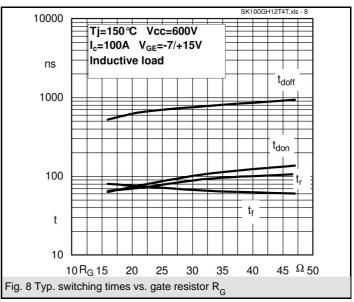

Characteristics										
Symbol	Conditions		min.	typ.	max.	Units				
Inverse Diode										
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2,2	2,5	V				
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		2,1	2,45	V				
V _{F0}		T _j = 25 °C		1,3	1,5	V				
		T _j = 150 °C		0,9	1,1	V				
r _F		T _j = 25 °C		9,5	10,5	mΩ				
		T _j = 150 °C T _j = 150 °C		13	14	$\text{m}\Omega$				
I _{RRM}	I _F = 100 A	T _j = 150 °C		52		Α				
Q_{rr}	di/dt = 1800 A/µs	-		14		μC				
E _{rr}	V _{CC} =600V			5,2		mJ				
$R_{th(j-s)D}$	per diode			0,62		K/W				
Freewhee	ling Diode									
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V				
V _{F0}		T _j = °C				V				
r _F		$T_j = ^{\circ}C$ $T_i = ^{\circ}C$				V				
I _{RRM}	I _F = A	T _j = °C				Α				
Q_{rr}		-				μC				
E _{rr}						mJ				
	per diode					K/W				
M_s	to heat sink		2,5		2,75	Nm				
w				60		g				
Temperature sensor										
R ₁₀₀	$T_s = 100^{\circ}C (R_{25} = 5k\Omega)$			493±5%		Ω				

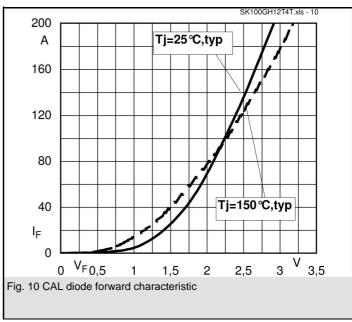

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

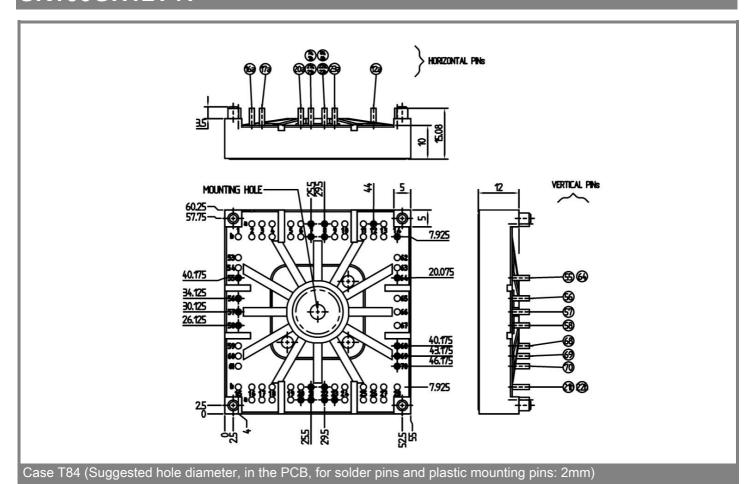

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

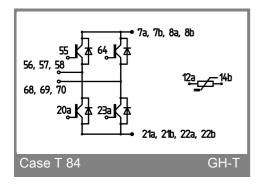












5 27-04-2009 DIL © by SEMIKRON